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SECTION 1

INTRODUCTION

During the last several years, aerodynamics of missiles at large incidence

has received considerable attention because of atmospheric flight requirements

such as high maneuverability and high launch angles of attack. Nonlinear

forces-and moments which come into existence at high angles of incidence have

caused a number of flight stability and controllability problems on both

missiles and aircraft. Extensive schlieren studies and yawmeter traverses of

the wake behind slender cone-cylinders at large angles of incidence have shown

that the flow pattern is generally steady. Under certain flow conditions,

however, the wake exhibits an instability which is not understood. Close to

the body nose no wake exists whereas further downstream two symmetrically

disposed vortices form on the lee side. These vortices are fed by vortex

sheets containing boundary layer fluid which has separated from the body.

Further along the body first one and then the other of these vortices detaches

and moves downstream at an angle to the free stream. At moderate angles of

incidence, a pair of stationary symmetric vortices appear on the leeward side

and the symmetrical wake configuration predominates. At large angles of in-

cidence this shrinks towards the nose and an asymmetric flow pattern becomes

very extensive. At even higher angles of attack the shedding vortices be-:

come completely unsteady. The steady asymmetric case is of considerable

interest to the aircraft industry since large side forces result at zero yaw

angles capable of producing aircraft departure into a spin situation.

To study the experimental data, Jorgensen and PerkinsI constructed a

simple theoretical model in which the induced flow field in any crossflow

plane along the cylindrical afterbody is represented by the incompressible

steady potential flow around a cylinder in the presence of two symmetrical

vortices of equal strength. Based on the model, vortex paths, which agree

well with the experimental paths have been computed. A more extensive study

of the symmetric vortex wake was presented by Mello2 , who measured total

pressure and cross-flow velocity on a cone-cylinder body at Mach Number 2.

In subsonic flow, body vortex wake has been studied by Tinling and Allen 3,

Fiechter4 , Grosche 5, Fidler, Nielsen and Schwind 6, Yanta and Wardlaw7, and

Owen and Johnson 8 . Thompson and Morrison9 analyzed the schlieren photographs

of the wake by means of the impulse flow analogy and also by considering the

vortices to be a part of a yawed infinite vortex sheet. The impulse flow analogy

I .



is shown to be of use in determing the cross-flow Strouhal number but estimates

of vortex strength are too high. The Karman vortex street theory combined with

sweepback principle leads to reliable estimates of vortex strength up to the

cross flow Mach number equal to unity. The pressure and force distribution

data have been presented by Lamont and Hunt10 on a sharp-nosed circular cylinder

at large angles of inclination to a uniform subsonic stream.

The symmetric body vortex wake of a circular cylinder in supersonic flow

has been investigated by Oberkampf and Bartel1 1 . They measured the flow field

in the cross flow plane at various axial body stations for angles of attack

from 10 to 25 degrees. Recently Hankey, Graham, and Shang 12 presented a

solution of the three dimensional flow field surrounding an ogive-cylinder

at various angles of attack through integration of the Navier-Stokes equations

on a CRAY-1 computer. The MacCormack's algorithm vectorized by Shang 1 3 was

used. The computed results compare favorably with experimental data in that

all primary features are captured. The flow on the leeward side of a slender

body of revolution has been experimentally investigated by Calarese14 at

large incidence for Mach numbers equal to 0-6 and 0-7 and unit Reynolds number

of 2.4 X 106. Hot film anemometers have been used to obtain the data. The"I

asymmetry and the steadiness of the vortex shedding pattern is ascertained,

Shivananda and Oberkampf 15 used the impulse flow analogy in conjunction with

the discrete vortex method to calculate theoretically the symmetric and

asymmetric body vortex wake. Agreement between the calculited values of body

forces and moments and those experimentally measured for both subsonic and

supersonic free stream flow was satisfactory.

The present study considers the potential flow past a circular cylinder

of radius, a, in the presence of two point vortices of strengths K1 and K2 .

These vortices are located in the complex Z(=x + iy) plane at the two

arbitrary points Z, and Z2 respectively. Two parameters govern the problem

2wUa/Kl and K2/K1 where U is the magnitude of the free stream velocity. For

several combination of these two parameters, values of ZI and Z2 are found

such that the induced velocity of the vortex centers is zero. Stability criteria

are then applied to ascertain whether the system is stable. And for the stable

system the lift and drag forces acting on the cylinder are calculated. Finally,

these results are compared with those available experimental studies under

similar conditions.

2
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SECTION TI

MATHEMATICAL ANALYSIS

Consider an inviscid incompressible fluid flowing from left to right with

free stream velocity U past a fixed cylinder of radius, a, the origin being

at the center of the cylinder. There are two point vortices of strengths

-K1 and K2 located at points A(Z1) and B(Z2) outside the cylinders in the

leeward side as shown in Figure 1! The complex potential for the flow can be

obtained with the help of circle theorem (see Milne-Thompson 16, pages 336-570).
12 a 2  -K, ,ii a 2

WMZ =-U(Z _ r-) I l n (Z - Z1) + r, ln (Z - 4).

(a iK2 i iK (Z _ a2

i(K 1  K2 ) lnZ + iK2 .n (Z - Z2) - In - ) (1)

where Z1 and Z2  are the complex conjugate of Z1 and Z2 respectively. Hence

the motion of the vortex A is obtained from the function

a 2  iK n Z a 2  i(K I - K2) InZ
WZI=-U(Z + -2) + 2-T n - ) -

iK2  ( a2iK2 in (Z- Z2) _ in a - (2)

27r 2 T2

The vortex A will be at rest if (dW zl/dZ) = 0 when Z = Z1 . Differentiating

(2) with respect Z and putting Z = Z1 we obtain

dWzi U (1 - a2 ) iK1  - - i(KI - K2)

Z Z2 2w (ZIY 1-a
2) 2rZ.

+ K2  1K Z2 0 (3)
27r (Z!-Z 2) (Z IT2- a 2 )

Similarly the condition that the vortex B is stationary can be obtained as

dWza2 i 1  iKlfl- =- U G1 --- -+
Z2 2w (Z2 Z0 2w (Z27 1 - a2)

i(Ki -K2) iK2 2  =0 (4)
2wZ 2  27 (Z2 2 -a 2 )

*Figures are located at end of report.
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The conditions (3) and (4) for the vortices A and B to have zero

velocity relative to the cylinder can be put in the non-dimensional form

i-2

a____ 0~ + is 5

The condtios (1- ) a ) (l -2 RI A- 1t ) z

and
I) i "1  _i_(_-__ i1i-8)

- a(C2 +I -- a 0 (6)
-E2 CO (C2(I - I) C2 (C2W2-1 )

where

1= ZI/a, cl = Z/a, C2 = Z2/a, C2 = Z2/a and a = 2waU/K1 ,

8 = /K

For given values of a and 3, equations (5) and (6) can be separated into

real and imaginary parts. Thus, we get four equations for four unknowns

CI,nI and &202 where cl = C1 + in,, etc, and these determine the positions

of the vortices such that the vortices are stationary.

To examine the stability of the above-mentioned system, it is observed

that at time (t) the two vortices are at points Z, and Z2 respectively.

If each vortex is displaced slightly, the positions of the vortices will be

given by Z1 + Zm and Z2 + Zn respectively where IZmI and IZnI are both small

initially. The system will be stable if these quantities decay exponentially.

The complex velocity of the vortex A in the displaced position is given

by

dW mZ M2 + m _____)/2n

+ [1 1 ( 1 2 i(K-K2)/2
dZ t -U [1 .ZZ Z))Z] + + Zm) (71 + Z a Zl + Z

mmm m

iK/2 - iK2 ( Z2 +7' )/27- (7)
(ZI + Zm - Z2 - Zn) (Z1 + Zm) (Z2 + Zn) -a 2

Since both IZ m and Zn are small initially, equation (7) becomes making

use of the condition (3),

dZ
t m =+ AZm +  +D1 Z (8)

where
-4TUa 2  iK2  i KZf2  iK 2  i Kj- Ki2vA= -1 - (Z1-Z2 )

2  (Z 1 -a ) (Z -a )

4
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-iK1a
2  2rC1 = +iK2  , 2rD1  iK2a 2

(ZIf 1 a
2)2 (Z1-Z2 )

2  (Zji2 2-a
2)2

Similarly the complex velocity of the displaced vortex B can be obtained as:

t= A2ZM + B2 Z C 2 Z D2Zn  (9)

where

-iK i a2  iKa 2

21rA 2 = "!_ 2 2wB2 = 2 2wD 2  Ki Z 2

2WC2 = 4wUa2  + iK1  _ iK1Z1
2  + i(K1- K2) +

Z2 3  (Z2 -Z 1 )
2  (Z27 1 -a

2 )2 z2 2

iK 2 Z 2
2

(Z2'f2_a
2 ) 2

Taking the conjugate of equations (8) and (9), we obtain:

dZM
= A1Zm + B1Z, + 'l D Z (10)Tt- m m n n

and
dZ
tn --

at =K 2Z f B'2 ZM .C2Z + D 2 Zn(1

where A1, 81,..., j2, etc. are the complex conjugate of A1, Bl,..., and D2.

The stability problem is well set. We can assume

Z = S1 exp (At) , -9 exp (At)m m
Zn = S3 exp (At) , = 3 exp (At) (12)

n n

and substitute (12) into (8) through (11). If anyone of the A roots possesses

a positive real part, the system will be unstable. If X has negative real

parts, then the system is stable.

In this report only antisymmetric disturbances are considered, i.e.,

Zn and If are assumed to be zero. In this case, we get
n n

d~m dZ.3 *IZ BI I 1Z~ (13)A1 a1 .F B1 m a

b5



or

d2  d
[U-2 - (B1 + B1) a- + (B1B1 - A1A1)] (Zm, -m) = 0 (14)

Since B1 is purely imaginary, B, + B1 is zero. Solution of (14) is given

by the exponential form similar to (12). Hence

1/2
X + {A1A1 -BIB 1 } (15)

Conditions for the stability become

(AIAI-B B 1 ) < 0 (16)

To calculate the lift and drag forces acting on the cylinder, we can

use the Blasius theorem (see Milne-Thompson1 5 , page 173). If X and Y are

the components of the forces acting on the body, one gets

X - iY = J o 2 dZ (17)

The path of integration for the integral in (17) is the body surface.

Equation iI) gives

d- a - iK, iK i(K 1 -K2) + iK9  iK (1
Z" Z - Z(Zl-a Z - Z, (ZZ 2 a (18)

When (18) is substituted into (17), we find that there are three poles

inside the circle at the origin, a2/fl and a2/f2 . Hence, (17) gives

X17Y2 Cl 1- - 8 82
L - I - 1-- :U _a , 2 11 ( 2 1 - 1 1 CI - CIT2

C -iC
+ - C2 ] C-iC = D L (19)
2 1 l' 2 C 1 - 2"2 -

For given values of u and 3, the roots of (5) and (6) find the location

of the zero-velocity vortices. The criterion (16) finds out whether the

above-mentioned determined system is stable. Finally the forces acting on

the cylinder are calculated by the equation (19).

6



SECTION III

DISCUSSION OF RESULTS

Foppl 17 investigated mathematically the motion of a vortex-pair

symmetrically placed behind a circular cylinder in a uniform stream. His

results could be derived if in the above analysis, we substitute that

K1 = K2 , Z2 = Z1 , T2 = Z1  ,3 = 1 , 2 =  1 , 2 =  1 (20)

With this simplification, equations (3) and (4) reduce to (see also

Milne-Thompson 16, page 370)

(Zf 1 - a2)2  + - 7i)2 = 0 (21)

Putting Z i = yle8  where 0 < <r/ 2 , this gives

2a y I = sine 1  = 2y n (i a (22)
a 1  a 21rUa a

Equations (22) are exactly the same as (7) and (8) in Foppl's paper.

To verify Foppl's results regarding the stability of the system, equations

(8) to (11) are invoked. We note that

A 1 = E2 , B1 
= 

2  , CI = A 2  , DI = B 2  (23)

Four equations (8) to (11) reduce to

Id
d (Z n) = (K + ) (O + Zn) + (B1 + I) (Z + Zn) (24)

dt m n m n m n

and

d ~~ (A, + DI) (Z + T) + (BI +.CI) (If .Z) (25)Ht(m+Z)m n m n

7



The corresponding stability conditior similar to the (16) is obtained as

(A, + DI) (A1 + D1) - (B1 + C1 ) (B+ C1) < 0 (26)

It is found that for all the combinations of Yj/2rUa and E, given by (22)

the condition (26) is satisfied. In otherwords the system is found to be

stable for symmetrical disturbances. On the other hand when Zn = Zn = o and

the parameters are given by (22), we find that for (yl/a) < 1°209, the

stability condition given by (16) is satisfied. But for (y1/a) > 1-209, the

system becomes unstable. Hence the symmetrical portion of the pair of vortices

is found to be unstable for antisymmetrical disturbances when (y1/a) > 1.209.

Further for the symmetrically situated vortex pair of equal and opposite

strengths, the force components acting on the cylinder have been calculated

by Muller 17 and Bickley1 8 . For this case the expression (19) becomes

X - iY 2i ( -1 1 ) -L [- I _

1 "22ra 1 C2 a2 1 -

= - -2 sin2e , + 4ay1coeS0
a2  1- 1 - 1 ay1 2  a2 (y1

2 a2)

2E C--i

4aylcos9(y - a2) CD-iC L (27)

a - 2a2y~cos26 + y14

This is the same relation as Bickley's equation (3.21). Thus, it is

verified that the analysis presented in this report reduces in the special

case to Foppl's results already available in the literature. The locus of the

two vortices as given by equation (21) is also shown in Figure 1.

With the help of secant search sub-routine roots of equations (5) and (6)

for various values of C and 3 are investigated. The admissible roots have to

be such that

2 2 2 2
(g +n )> 1, ( n )> 1, and n 0 0.

1 1 2 2 2

The condition for the stability (16) has to be satisfied. On the basis

of systematic search, values have been obtained and these are given in Table 1.

The lift for each case has also been calculated. In Figure 2, the lift coeffi-

8



cients CL(= C ) are plotted graphically versus $/a(= K2/27raU) for various values
of I/a(= K1/2waU). It is clear from Fig. 2 that the lift coefficients of the

order of 2 or 3 due the stable locations of the vortices are comparable with

those obtained by Shivananda and Oberkampf15 . Although the results given in

Table 1 and shown in Fig. 2 are restricted to the values of 1/m equal to or less

than 0.1, it is found that for values of a > 10 (or I/a <0.1), higher values

of the lift coefficients CL can be obtained on the basis of the theoretical study

presented in this report. The region of instability is also shown in Fig. 2.

The positions of the asymmetrical vortices are shown in Fig. 1 and the regions

of the unstable locations are pointed out. Thus the theoretical study based on

the ideal inviscid motion proves that the circular cylinder held fixed in a

free stream with the asymmetrically situated vortices experiences a lift of

the magnitudes comparable with those experimentally measured.

9

+Z

mals



TABLE 1

Location of stationary vortives for various values of a and 8

B/a a &B nl &2 n2 CL Stable

0.42 2.98 1.25 1.44 1.54 2.08 -1.46 -0.069 no

0.5 2.50 1.25 1.67 1.02 2.12 -1.56 -0.832 yes

0.6 2.08 1.25 1.70 0.79 2.02 -1.41 -0.748 yes

0.7 1.79 1.25 1.68 0.67 1.91 -1.23 -0".559 no

0.6 2.50 1.5 1.22 1.27 1.93 -1.25 0.226 yes

0.8 1.88 1.S 1.48 0.69 1.89 -1.31 -0.528 yes

1.0 1.50 1.5 1.49 0.52 1.74 -1.12 -0.286 yes

1.2 1.25 1.5 1.47 0.44 1.64 -0.97 -0.056 yes

1.6 0.94 1.5 1.43 0.35 1.50 -0.76 0.252 no

0.9 2.22 2.0 1.02 1.12 1.82 -1.08 1.005 yes

1.2 1.67 2.0 1.29 0.5 1.79 -1.20 -0.047 yes

2.0 1.00 2.0 1.33 0.30 1.48 -0.89 0.396 yes

2.4 0.833 2.0 1.33 0.25 1.40 -0.78 0.537 yes

3.0 0.667 2.0 1.32 0.20 1.34 -0.66 0.645 no

1.1 2.27 2.5 0.78 1.25 1.69 -0.92 2.849 no

1.8 1.40 2.5 1.24 0.43 1.66 -1.12 0.327 yes.

2.6 0.96 2.5 1.27 0.25 1.44 -0.90 0.600 yes

3.4 0.74 2.5 1.27 0.18 1.33 -0.75 0.757 yes

4.3 0.58 2.5 1.28 0.14 1.27 -0.64 0.823 no

1.3 2.31 3.0 0.64 1.30 1.59 -0.86 4.445 no

2.6 1.15 3.0 1.21 0.31 1.53 -1.02 0.625 yes

3.8 0.79 3.0 1.23 0.18 1.34 -0.82 0.842 yes

4.6 0.65 3.0 1.24 0.13 1.28 -0.72 0.905 yes

5.6 0.54 3-0 1.25 0.10 1.24 -0.64 0.908 no

10
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/ 0 1  nI  C2  n2  CL Stable

1.8 2.22 4.0 0.63 1.16 1.60 -0.87 3.757 no

3.2 1.25 4.0 1.14 0.35 1.58 -1.07 0.848 yes

4.8 .0.83 4.0 1.17 0.17 1.34 -0.87 0.986 yes

6.4 0.62 4.0 1.19 0.09 1.24 -0.74 1.051 yes

8.4 0.48 4.0 1.21 0.05 1.19 -0.71 1.037 no

2.3 2.17 5.0 0.63 1.08 1.62 -0.93 2.786 no

3.6 1.39 5.0 1.07 0.42 1.66 -1.09 1.068 yes

5.6 0.89 5.0 1.13 0.18 1.37 -0.92 1.093 yes

8.0 0.62 5.0 1.16 0.08 1.23 -0.76 1.144 yes

11.0 ,0.45 5.0 1.19 0.02 1.17 -0.63 1.13 no

2.7 2.22 6.0 0.42 1.31 1.40 -0.84 8.796 no

3.0 2.00 6.0 0.73 0.91 1.70 -0.92 3.079 yes

5.0 1.20 6.0 1.08 0.32 1.56 -1.04 1.159 yes

9.0 0.67 6.0 1.13 0.09 1.24 -0.79 1.213 yes

14.0 0.43 6.0 1.17 0.00 1.15 -0.63 1.123 no

3.7 2.16 8.0 0.58 1.01 1.60 -0.88 4.750 no

5.5 1.45 8.0 0.99 0.47 1.70 -1.06 1.517 yes

8.0 1.0 8.0 1.07 0.22 1.43 -0.97 1.307 yes

12.0 0.67 8.0 1.10 0.08 1.23 -0.80 1.309 yes

20.0 0.40 8.0 1.15 0.02 1.12 -0.62 1.178 no

4.6 2.12 10.0 0.56 0.99 1.59 -0.89 1.589 no

6.0 1.67 10.0 0.88 0.63 1.76 -1.01 2.080 yes

12.0 0.83* 10.0 1.06 0.15 1.33 -0.90 1.388 yes

18.0 0.56 10.0 1.09 0.03 1.17 -0.74 1.332 yes

26.0 0.38 10.0 1.14 0.04 1.11 -0.62 1.187 no

I." 11
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SECTION IV

Conclusion

With the aid of complex - potential flow analysis, the location of a

pair of asymmetric zero-velocity vortices for flow past a circular cylinder

is investigated in terms of two-dimensionless parameters a (- 2wUa/K1) and

B (= K2/K1). The condition for the stability of the system is established

by the small perturbation theory. The Blasius theorem Letermines the forces

acting on the system. It is pointed out that if the values of a and 8

are known for any actual flight conditions, the mathematical analysis pre-

sented in this paper will be of great help in analyzing the data.
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SECTION V

RECOMMENDATION

The action of viscosity and the non-linear interaction on the stability of

two infinite vortex sheets have been examined by several authors21, 22, 23

Similary the effects of viscosity and non-linearity can be investigated on the

stability of a pair of vorticity in the leeward side of a cylinder. In the

present investigation, the vortices were taken to be point-vortices. In the

future work, an attempt can be made to study the effect on the configuration of

vortices in the wake behind a cylinder of an allowance for the thickness of the

vortices in the potential flow field. Schlayer 24 and Rosenhead25 presented such

studies for the stability of the Karman double row of recti-linear vortices.

13
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